Pitman transforms and Brownian motion in the interval viewed as an affine alcove

نویسندگان

چکیده

Pitman's theorem states that if {Bt, t ≥ 0} is a one-dimensional Brownian motion, then {Bt − 2 inf s≤t Bs, three dimensional Bessel process, i.e. motion conditioned in Doob sense to remain forever positive. In this paper one gives similar representation for the an interval. Due double barrier, it much more involved and only asymptotic. This uses fact interval alcove of Affine Lie algebra A 1 .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Walk in an Alcove of an Affine Weyl Group, and Non-colliding Random Walks on an Interval

Abstract. We use a reflection argument, introduced by Gessel and Zeilberger, to count the number of k-step walks between two points which stay within a chamber of a Weyl group. We apply this technique to walks in the alcoves of the classical affine Weyl groups. In all cases, we get determinant formulas for the number of k-step walks. One important example is the region m > x1 > x2 > · · · > xn ...

متن کامل

Affine stationary processes with applications to fractional Brownian motion

ABSTIUCT In our previous work, we introduced a new class of nonstationary stochastic processes whose spectral representation is associated with the wavelet transforms and established a mathematical framework for the analysis of such processes 111. We refer to these processes as uffine stptionary processes. These processes are indexed by the affine p u p , or ax+b group, which can be though of a...

متن کامل

Alcove walks and nearby cycles on affine flag manifolds

Using Ram’s theory of alcove walks we give a proof of the Bernstein presentation of the affine Hecke algebra. The method works also in the case of unequal parameters. We also discuss how these results help in studying sheaves of nearby cycles on affine flag manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Scientifiques De L Ecole Normale Superieure

سال: 2022

ISSN: ['0012-9593', '1873-2151']

DOI: https://doi.org/10.24033/asens.2499